Events

12.23

16:00-17:00

Event Details:

Title:IASM Distinguished Lectures: Restriction estimates using decoupling theorems and incidence inequalities for tubes

Date: December 23, Monday, 16:00-17:00

Venue: Lecture Hall

Speaker: Hong Wang(New York University)


Abstract: Suppose f is a function with Fourier transform supported on the unit sphere in R^d, Elias Stein conjectured in the 1960s that the L^p norm of f is bounded by the L^p norm of its Fourier transform, for p> 2d/(d-1).  We propose to study this conjecture using Bourgain-Demeter decoupling theorems and incidences estimates for tubes.  


In this talk, we will describe a geometric conjecture on the number of incidences for tubes that would imply Stein's restriction conjecture. We prove this geometric conjecture in R^2 and use it to prove a restriction estimate in R^3 for p> 3+ 1/7, which implies Wolff's hairbrush Kakeya estimate (i.e. any Kakeya set in R^3 has Hausdorff dimension at least 5/2). 



Profile: 王虹,纽约大学柯朗数学科学研究所副教授,主要研究领域为傅里叶分析。她于2011年获得北京大学数学学士学位,2014年取得巴黎综合理工学院工程师学位和巴黎第十一大学硕士学位,2019年在麻省理工学院完成博士学位,导师为Larry Guth教授。随后,她在普林斯顿高等研究院从事博士后研究,2021年7月起担任加州大学洛杉矶分校助理教授,2023年7月加入纽约大学柯朗数学科学研究所任副教授。她在调和分析和几何测度论领域取得重要成果,推动了傅里叶限制性猜想和Falconer距离集猜想的研究,并与合作者解决了Sogge的2+1维波动方程局部光滑性猜想和Furstenberg集合猜想。因在限制性猜想、局部光滑性猜想及相关问题上的研究进展,2022年她获得Maryam Mirzakhani新前沿奖。


Lecture Seminar